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C O M P A T I B I L I T Y  C O N D I T I O N S  O F  S M A L L  

D E F O R M A T I O N S  A N D  S T R E S S  F U N C T I O N S  

N .  I. O s t r o s a b l i n  UDC 539.3:517.958 

The Saint Venant compatibility conditions and the Maxwell and Morera stress functions have been 
known since the last century and are presented in textbooks on the theory of elasticity, but with insufficient 
clarity. There is extensive literature on this subject (see, e.g., [1-23]) in which the number of independent 
compatibility conditions, the generality and completeness of stress functions, and formulations of elastic 
problems in terms of stresses are discussed. 

In the present paper, it is shown that there are 17 equivalent forms, with three compatibility conditions 
of small strains in each, to which correspond 17 forms of representation of stresses via three stress functions. 
Any of the 17 forms of stress representation is proved to be the general and complete solution of equilibrium 
equations. A new formulation of elastic equations in terms of stresses is given, and it is shown that 289 versions 
of systems of equations for three stress functions are possible. It follows from the results of the study that it 
is admissible to formulate the boundary-value problem for a system of six equations for three stress functions 
and three displacements instead of the formulation of the problem for displacement and stress equations. 

In the absence of volumetric forces, we have the following equilibrium equations in the Cartesian 
rectangular coordinates xl, x2, and x3: 

0j ij = 0, ( i )  

to which correspond the stresses qO = aji expressed via the tensor of stress functions 7pq = ")'qp [3-4]: 

O'ij = CimpgjnqOmn'~pq. (2) 

Here 0j" are the derivatives with respect to the xj coordinate and eimp are the Levi-Civita symbols; the repeat 
indices imply summation. The small strains el l  = e l i  are expressed via the displacements u i as follows: 

Eij = (OjUi + O i u j ) / 2 .  (3) 

The compatibility conditions are usually written in the form 

s i j  = ~imp~jnqO,nnepq = 0. (4) 

Note that for the so-called incompatibility tensor s i j  = s j i ,  the equalities 

0 i s i  i = ei,~pei,~qcO,,,,,iepq - 0 

are satisfied. 
Let us introduce the compatibility conditions in a way different from that used in the textbooks on 

elasticity theory. We write Eq. (3) in more detail as follows: 

01Ul ----- e l l  ----" e l ,  03U2 "{- 02U3 ----- 2e23 -- V/'2e4, 

02U2 ----- e22 = e2, 03721 n t- 01U3 = 2e13 ~-" V/'2e5, (5) 

03U3 ---- C33 = e3, 02Ul q- 01U2 ---- 2e12 ---- V~E6. 
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If the strains r are given, then for three displacements ui, there are six equations (5). Since the number of 
equations is greater than the number of unknowns, we have to check the compatibility of system (5). 

We choose linearly independent subsystems of three equations from (5) from which three displacements 
are defined and write the remaining three equations. The following versions of grouping of Eqs. (5) are possible, 
with three equations in each: 

No. 1. (1,2,3; 4,5,6), No. 6. (1,3, 

No. 2. (1,2,.t; 3 ,5 ,6 ) ,  

No. 3. (1,2,5;  3 ,4 ,6 ) ,  

No. 4. (1,2,6;  3 ,4 ,5 ) ,  

5; 2,4, 6), 

No. 7. (1,3,6; 2,4,5), 

No. 8. (1,4,5; 2,3,6), 

No. 9. (1,4,6; 2,3,5), 

No. 11. (2,3,4; 1,5,6), 

No. 12. (2,3,5; 1,4,6), 

No. 13. (2, 3, 6; 1,4, 5), 

No. 14. (2, 4, 5; 1, 3, 6), 

No. 16. (2,5,6; 1,3,4), 

No. 17. (3,4,5; 1,2,6), 

No. 18. (3,4,6; 1,2,5), 

No. 19. (3,5,6; 1,2,4), 

(6) 

No. 5. (1,3,4; 2,5,6), No. 10.(1,5,6; 2,3,4), No. 15. (2,4,6; 1,3,5), No. 20. (4,5,6; 1,2,3). 

Here the first figures in the parentheses denote the row (strain) numbers that are considered independent. For 
the underlined versions, the rows (strains) are linearly dependent, and the determinants of these subsystems 
are equal to zero. Thus, 17 versions of (6) of subsystems remain, from which one can find three displacements. 
In this case, instead of (5), we have 17 versions of systems of the form 

A l u  = a, B i u  = b, [All # 0. (7) 

For compatibility of system (7), the corresponding bordering minors of the augmented matrix must be 
zero [24]. For example, for version No. 1 [see (6)], the matrices A1 and BI are of the form 

01 0 
A I =  0 02 

0 0 

Let us equate the bordering minors of 

M(1,2,3,4) --~ 

0 o o3 o2 
0 , B1 = 03 0 01 

03 02 01 0 

the augmented matrix to zero: 

01 0 0 el 

0 02 0 ~2 = 01(023Vf2~4 -- 033~2 -- 022e3) = 0, 
0 0 03 e3 

0 03 02 v/7~4 

(8) 

M(1,2,3,5) --~ 

0a 0 0 el 
0 02 0 e2 
0 0 03 ~3 

03 0 Ol V~e5 

Oq2(Oq13V~:5 -- ~33~I -- 0q11~3) = O, (9) 

01 0 

o 02 
M(1'2'3'6) ----- 0 0 

02 01 

0 ~1 

0 ~2 
03 e3 

0 V/2e6 

= 0 3 ( 0 1 2 v / 2 e 6  - 0 2 2 e l  - 0 1 1 c 2 )  = 0 .  

The factors Oi in (9) that are not 
conditions in the form 

023 V/2~4 = 03382 3 u 02293, 

C1 --- 

equal to zero can be omitted, and we can write the compatibility 

013X'~5 = 033EI "~ 01193, 012V/2~6 = 022el "~ 01192, 

023 0 0 0 033 022 
0 013 0 , DI = 033 0 0H 
0 0 012 022 011 0 

It is seen from (7), (8), and (10) that the relation C1B1 = D1Ax is fulfilled. 

Clb = D la ,  

(10) 

775 



Thus, the compatibility conditions of system (7) are of the form Clb = D l a ,  where C1 and D1 are 
the operators with a minimum possible order of derivatives. Note that CIB1 = D1A1. For equations with 
constant coefficients of the matrices, C1 and D1 are obtained from the requirement of zero bordering minors 
of the augmented matrix [see (9) and (10)]. If Ci and D1 have a common factor, it should be omitted [see (9) 
and (10)], because, apparently, one should use C1 and D1 of minimum degree with respect to 0i, and it does 
not make sense to increase the order of these operators. On the other hand, if Clb = D l a  and C1B~ = D~A~, 

there exists u such that  a = A~u and b = B~u. 

Indeed, the general solution of the linear system (7) is of the ;orm u = u0) + u(~ where u(0 is the 
particular solution (if it exists) of the nonhomogeneous system A~u(D = a and B~u(D = b, and u {~ is the 
general solution of the homogeneous equations A1u (~ = 0 and B~u (~ = O. In essence, the second equation 
B~u(~) = b is the compatibility condition. We exclude u (1) from it. Let C1BI = D1A1 (C~ and D~ are the 
operators of minimum possible order). After that,  having multiplied BIu(D = b by C~, we obtain successively 
C~B~u (1) = Cib, D I A ~ u  (~) = C~b, and D~a = C~b, i.e., the last relation is the necessary compatibility 
condition. In addition, it is the sufficient compatibility condition of the system A~uO) = a and B~u (1) = b. 

In [25], the general solution of the equation D l a  = Clb was proved to be of the following form: a = A ~ ,  
b = BI~ + r  and C1r = 0 with C1B1 = D1A1, i.e., for any concrete a and b, subject to the condition 
D~a = C~b, there are ~ and r such that  a and b are represented in the above form. Substituting these a 
and b into our system, we have A]u (1) = Ai~  and Blu0)  = Bl~o + r From the first equation, we then have 
u (1) = ~, and from the second one, we obtain r = 0. Thus, there is no need to write the unnecessary functions 
r and CIr  = 0, and the relation D l a  = Clb  is the necessary and sufficient compatibility condition of the 
system Alu(D = a and B l u ( D  = b. 

We shall perform all manipulations for the remaining versions of (6) and write appropriate compatibility 
conditions that permit us to find the matrices C1 and D1. As a result, we obtain 

No. 1. (1,2,3; 4,5,6) No. 20. (4,5,6; 1,2,3) 

2~2351 -~- --011V/254 "4- G012V/255 -{" 013V/256, 

201352 ----- 012V~54 - -  022V~55 "~- 023V/256, 

~23V/'254 = 03352 3 t" 05253, 

013v'~55 = 0335! + 01153, 

012V/'256 = 02251 "4- 01152; 

No. 2. (1,2,4; 3,5,6) No. 

02253 ----" --03352 "4" 023V/'254, 

~122V/'255 ----- ~22351 -- ~11352 "4- ~112V/254, 

~12V~56 = G~22~1 "4- ~11~2; 

No. 3. (1,2,5; 3,4,6) 

01153 = -03351 + 013v~hs, 

Ol12V/r254 ~- --022351 "I- 011352 "~- OI22V/2e5, 

Gq12V~56 ----- 02251 -~ 011~2; 

No. 4. (1,2,6; 3,4,5) 

[AI[= 0; 

No. 5. (1,3,4; 2,5,6) 

~3352 = --O2293"4-023V/254, 

013V~55 : 03351 2t" 01153, 

0133v~56 =023351 -011253 +0113v~54; 

201253 = OISV~54 

19. (3,5,6; 1,2,4) 
03351 "- --011~3 "[- 

+ 023v%5 - 033vff56; 

013v/~hs, 
0,s3~2 = a , ~ s  - 02~sv~s  + a 2 3 3 v ~ ,  

No. 18. (3, 4, 6; 1, 2, 5) 

023351 ~-- 011263 - Oql13X/254 -[- ~133,q/256, 

03352 = --02253 Jr 023X//254, 

O2av~es = 2012e3 - 013x/254 + 033v~56; 

No. 17. (3, 4, 5; 1,2, 6) 

03351 = -01153 + 013v~hs, 

03352 = -02~53 + 023v/254, 

033v~56 = -201~53 + 013v/254 + 023v~5; 

No. 16. (2, 5, 6; 1,3, 4) 

~2251 -~- --6Ql152 + G~12V/256, 

6Q12253 = 013352 "3 t- ~ 2 2 3 V ~ 5  -- ~233X/-256, 

~12V/'254 : 2GQ1352 + 022X/~55 -- ~23V/'256; 
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No. 6. (1,3,5; 2,4,6) 

IAll = 0; 

No. 7. (1,3,6; 2 ,4 ,5)  

01162 --= --02261Jc-012V/'2E6, 
0113X/~64 ----023361Jt-011263-~'0133V/"266, 
013X/'~65 =03361-/I-01163; 

No. 8. (1,4,5; 2 ,3 ,6)  

0113~2 =0223~1 +0112vf-264-0122v~T5, 

011z3 = -023r 

913V~66 =202361Jf'011X/~64--012vf"265; 

No. 9. (1,4,6; 2 ,3,5)  

011e2= -02261+012v~66, 
011263 =023361 +Ol13V/2264--O133V/'266, 

012V/2~5 =202361 "~'011V~64--013V/--266; 

No. 10. (1,5,6; 2 ,3 ,4)  

01162 =-02261+012v/266, 
01163 = -033e1+013vZ-2es, 
011X/~64 = --2023~I +012V/2265+0i3v/~66; 

No. 15 (2,4,6; 1,3,5) 

02261 = -01162+012v~66, 

02263 -"-'=--03362"~023X/'264, 
022"~'2~5 = --201362 +012~64 + 023Vg"266; 

No. 14. (2,4,5; 1,3,6) 

022361 ~"--'O11362--Ol12V/264"It-O122V/'265, 
02263= -033~2+022vff64, 
023Vf266=201362--012,v/2264+022v/265; 

No. 13. (2,3,6; 1,4,5) 

02261 =-01162+012v"266, 
023V/-'264=02362-1t-02263, 
0223V/265 =--013362-~-012263-~'-0233V/266; 

No. 12. (2,3,5; 1,4,6) 

03361 =-0116s+013v~T5, 
023vF264=02362+02263, 
0233X/~6 ~'-'="013362 --012263 "~0223V'r265; 

No. 11. (2,3,4; 1,5,6) 

(11) 

IA~I = o. 

Thus, we have obtained 17 versions of the compatibil i ty conditions (I1). Each version contains three 
compatibility conditions rather than six, as in the Saint Venant classical conditions (4). These 17 versions are 
equivalent, and, hence, correspond to the same initial (overdetermined) system (5) and are derived from one 
another if one solves them with respect to any triad of strains whose complementary determinant  [AI[ is not 
equal to zero. 

We have to mention compatibil i ty conditions that  are different in form. These are the first six conditions 
in (11) and the conditions with the third derivatives, which were not previously known. As is seen from 
(11), there are only three conditions with the third derivatives, i.e., there are apparent ly only nine different 
conditions; we write them in the  ma t r i x fo rm 

1. 023 0 0 ~/r264 
0 013 0 vZ265 

v~66 0 

2023 
0 

0 

0 

0233 
--0223 

. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

0 0]2 

0 0 

20130 
0 2012 

--0133 0122 
0 -0112 

0113 0 

~2 
63 

0 033 

= 033 0 

022 011 

-011 
= 012 

013 

61 

62 = 

63 

022 

Oil 

0 

012 
-022 

02~ 

0 

--0113 

0112 

62 
63 

013 

023 
-033 

0223 
0 

--0122 

V/254 
v~Ts 
v~66 

--0233 
0133 
0 

V/-264 
v~65 
v~66 

(12) 

The first six equations here are the Saint Venant conventional conditions (4), while the last three are additional 
conditions that  were not known previously, but all together they are not compatibili ty conditions as equation 
Nos. 1-3 or 4-6 from (12). They just  ehter other triads-of compatibil i ty conditions. Below, we write these 17 
triads of possible compatibil i ty conditions [see (11) and (12)] as follows: 
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1. (1,2,3), 2. (4,5,6), 3. (1,9,3), 4. (2,7,6), 5. (2,9,3), 6. (8,1,6), 
7. (2,1,6), 8. (1,2,8), 9. (3,7,5), 10. (3,1,5), 11. (3,8,2), 12. (9,1,5), 

13. (9,2,4), 14. (3,1,7), 15. (3,8,4), 16. (2,1,7), 17. (3,2,4). 

These triads of conditions can be obtained informally, by direct integration of Eqs. (5). For example, 
we have the first version (1,2,3). From thc first three equations of (5), we then find by integration that 

,~1) = 071~1 + ~,1(~2,~3), 
,,~') = a~-% + w~(=1, ~ ) ,  a,.-' = ] ( . . . )d~ j .  (13) 
,~i) = a~-I~3 + ~3(~i,  ~2), 

After substitution of (13) into the last three equations of (5), we obtain 

x/564 = &(0~-%2 + v2(~1, ~3)) + 02(0~-163 + v3(~1, ~2)), 

v~65 = 03(07161 + ~1(~2,~3)) + 01(0~-163 + ~3(~1, ~2)), (14) 

v~66 = 02(07161 + ~1(~2, x3)) + 01(0;162 + ~2(xl, ~3)). 

Relations (14) are precisely the compatibility conditions, i.e., if 61, 62, and 63 are independent functions, then 
64, 65, and e6 cannot be arbitrary functions and should have the form (14) for system (5) be compatible. 
To derive conditions (10) from (14), we differentiate each equation in (14) with respect to 023, 013, and 012, 
respectively. Clearly, the functions ~1, 92, and ~3 vanish after differentiation, and we obtain three equations 
(10), as it should be, i.e., the compatibility conditions (14) or (10) are only three in number, rather than six, 
as is considered traditionally [see (4)]. We can act similarly with other versions. A similar approach and the 
derivation of equations of the form (14) are given in [9, 14, 15]. 

The general solution of the linear equations (5) consists of the partial solution of nonhomogeneous 
equations and the general solution of homogeneous ones, i.e., when ei = 0. Let us find the last solution. From 
(13) and (14), for ei = 0, we obtain 

U~ O) = ~O)(x2,X3), 03~?)(X1,X3) + O02(p?)(Xl,X2) = O, 

u~ ~ = v~~ a3v~~ z3) + 01v~~ z2) = O, (15) 
~?) = v~~ ~2), a2v~~ ~3) + alv~~ ~3) = o. 

It follows from (15) that  ~0)  can be only the following differential functions: 

~~ x3) = o~1 -{- o~12x2 Jr" o'13x3, 

~0)(Xl,  X3) = 32 + O~21Xl + tX23X3, aij + ayi = 0. (16) 

~.9~0)(XI, X2) = O~3 "{- O31Xl -{- ~32X2, 

Expressions (16) determine the displacements of a body as a solid. Formulas (13) and (16) are the 
representations of displacements via strains (and there is no need to use the Ces~ro formulas), and the 
functions ~, are found from (14). Thus, the whole arbitrariness in the integration of system (5) is determined 
by the linear functions (16). Therefore, it suffices to find only a partial solution of the nonhomogeneous system 
(5). 

Now let us consider Eqs. (1). We denote a = (o'11,o'22,o'33 , v/20"23, v~0"13, V/~0"12) and write (1) and 
(3) and the Hooke generalized law in matrix form 

Ca=O, a = A e ,  e=C'u ,  (17) 

where A = A ~ is the elasticity matrix, 

01 0 

C =  0 02 
0 0 

0 0 (1 / x/2)03 (1/x/~)a2 
0 ( l ive)& 0 (l/v/~)al 
03 (1/v/~)O2 (live)a1 0 

; (18) 
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the prime denotes transposition. 
Since Eqs. (i)  are three in number,  and the unknowns cri are six in number,  grouping the quantities 

~ri by three, we can rewrite (1) as the compatibili ty conditions [see (10)] 

A~v=Biw,  IA i l  # 0. (19) 

Here A~ and B~ are the transposes A1 and B1 from (7). The  possible versions of grouping of the quantities 
ai by three are given above [see (6)]. It follows from the relation D1A1 = C1B1 that  

A~D~ = BIC i. (20) 

With allowance for (20), we find the general solution [25] of Eqs. (19) via three arbitrary stress functions ~ ,  
~02, and qo3: 

v = D~o, w : C ~ .  (21) 

In [25], the general solution of Eqs. (19) is as follows: v = D~ , ,  w = C ~  + r  and B~r = 0, but if all 
operators are linear and the relation C~Ker D~ = Ker B~ (Ker is the kernel of the operator) is satisfied, the 
general solution is as follows: v = D ~ ,  w = C ~ .  

A direct verification shows that  the condition C~KerD~ = KerB~ for the operators from (19) and 
(20) is satisfied, thereby ensuring the generality of the solution of (21). The  generality of the solution of the 
Maxwell and Morera solutions [see solution Nos. 1 and 20 in (22) below] is proved in [1]. 

Let us check the satisfaction of the condition C{KerD~ = KerBS, for example, for solution No. 2 
from (22). The  kernel of the operator B~ is found from the equations (93r + (92r = 0, (91r 0, and 
03r + (91r = 0 whose solution is of the form r = ga(zl ,  x2) - 01fa(xl, x2)x3, r -- fa(xl, x2) - 02fl(X2, X3) 
and r = Ozfl(x2, z3), where f~ and g3 are arbitrary functions of the corresponding arguments.  The  kernel 
of the operator D~ is determined from the equations Oq223~2 "4- Oq22~P3 ---- 0, --O~33~1 -- (9113~P2 + (911~3 : 0, and 
Oq23~1 -1- (~112~2 ---- 0, whose  so lu t ion  is as follows: 

~1 = 20n72(x l ,  za) - 911 [O~2(Xl, X3) "a t-/~2(Zl, X3)Z21 -- (911"f3(Zl, Z2)X3 "Jl- h3 (z l ,  z2) ,  

~02 = --~3"/'2(Xl, X3) -I- (~3[~2(Xl, X3) @ ~2(Xl,  ~3)ag2] JI- ~3(Xl, X2) -- O~I(X2, X3) -- ~1(X2, X3)Xl, 

= 033 2(xi, x3) + 03[-1(x2, + 

Here a/,  ~i, and 7i, h3 are arbitrary functions of the corresponding arguments. Multiplying the functions ~, 
by the operator C[, we have 

Pl = Oq22q01 ---- O22[h3(xl,x2) - -  Oqll~3(Xl, X2)X3], 

P2 "= 0122~2 = (9122~/'3(XI, X2) -- Oq22~l(X2, X3), 

P3 : 012~3 ---- (~23f~l(X2, X3). 

Having denoted 022ha(xl, x2) = ga(xl,X2), 01227a(x1,x2) = f 3 ( x l ,  x2), and 02t~ l (X2 ,X3)  = f l (X2,  X3), we see 
that  the relations for pi and r coincide. This points to the fact that  the condition C~Ker D] = Ker B' 1 is 
satisfied, and solution No. 2 from (22) is general. Similarly, one can check the satisfaction of this condition 
for the remaining solutions of (22). 

In accordance with the versions from (6), we now write 17 forms of the general solution of the 
equilibrium equations (1), i.e., 17 forms of stress representations via three stress functions, as follows: 
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No. I. (1,2,3; 4,5,6) 

al 0 
0"2 033 

0"3 022 

~ --023 

0"13 0 

o"12 0 

033 

0 

01] 

o 
--013 

0 

(Maxwell solution) 

022 
' 0 1 1  

0 ~1 
0 ~2 , 

0 

-012 

No. 20. (4,5,6; 1,2,3) 

0-23 

0"13 

i 0"12 

0"1 

0"2 

0"3 

--011 012 

,912 -022 
013 023 

--2023 0 

0 -2013 
0 0 

(Morera solution) 

013 
023 

-033 ~,1 
0 ~P2 , 

U3 0 

--2012 d 

No. 2. (1,2,4; 3,5,6) 

0-1 

0-2 

0"23 

0-3 

o"13 

0-12 

0 
-033 

023 
-022 

0 
0 

0223 

--0113 

0112 
0 

--0122 
0 

0 
0 
0 

-012 

022 

011 
~01 

~2 
cp3 

- 0. 3 

0-13 

o"12 

0"1 

0"2 
0"23 

No. 19. (3,5,6; 1,2,4) 

--011 0122 2012 

013 --0223 --023 

0 0233 033 

--033 O 0 

0 --0133 0 

0 0 --013 

~3 

No. 3. (1,2,5; 3,4,6) 

" 0-1 
O'2 
0-13 

0,- 3 

0"23 

. 0 " 1 2  

--033 --0223 

0 0113 

013 0122 
-011 0 

0 -0112 
0 0 

022 
011 
0 
0 
0 

~012 

~2 

~3 

0" 3 

0"23 

O"12 

0-1 

0"2 

O"13 

No. 18. (3, 4, 6; 1, 2, 5) 

0112 --022 2012 
-0113 023 -013 

0133 0 033 

-0233 0 0 
0 -033 0 
0 0 -023 

~2 
~3 

No. 4. (1,2,6; 3,4,5) 

IAil=O, 
- 0. 3 

0-23 

0-13 
0-1 

0-2 

. 0-12 

No. 17. (3,4, 5; i, 2, 6) 

-01, 
0 

013 

-033 
0 

0 

--022 --2012 
023 013 
0 023 
0 0 

-033 0 
0 -033 

r 
~3 

No. 5. (1,3,4; 2,5,6) 

0"1 ] 0 
0"3 -- 022 

0"23 [ = 023 

0"2 J --033 

0-13 0 

0"12 J 0 

033 

011 
0 
0 

--013 
0 

0233 

--0112 

0113 
0 
0 

--0133 

~2 
~3 

0" 2 

0"13 

0"12 

0"1 

0"3 

. 0"23 

No. 16. (2,5,6; 1,3,4) 

--011 0133 2013 
0 0223 022 
012 -0233 -023 

--022 0 0 

0 -0122 0 
0 0 -012 

~2 
~3 

(22) 

780 



No. 6. (1,3,5; 2,4,6) 

IAil =o,  
O" 2 

0"23 

O"12 

0-1 

0-3 

0"13 

No. 15. (2, 4, 6; i~ 3, 5) 

--01X --033 --2013 
0 023 012 
012 0 023 

-022 0 0 
0 -022 0 
0 0 -022 

V)l 

~ 2  

~P3 

No. 7. (1,3,6; 2,4,5) 

" 0"1 

0" 3 

0"12 

0- 2 

0"23 

. 0-13 

-022 
0 

012 

--011 
0 
0 

--0233 
0112 

0133 

0 

--0113 
0 

~33 

011 

0 
0 
0 

--013 

~2 

(~3 

�9 0. 2 

0"23 

O"13 

0.1 

0" 3 

. 0"12 

No. 14. (2, 4, 5; 1,3, 6) 

0133 --033 2013 

--0112 023 --012 

0122 0 022 
--0223 0 0 

0 -(022 0 

0 0 -023 

r , 

~v3 

No. 8. (1,4,5; 2,3,6) 

' 0-1 

0"23 

0"13 

0.2 

0" 3 

�9 0"12 

0223 

0112 

--0122 

--0113 
0 
0 

No. 9. (1,4,6; 2,3,5) 

0-1 

0"23 

0-12 

0"2 

0" 3 

0"13 

-022 
0 

012 

-011 
0 
0 

- & 3  
o 

0]3 

0 

- - 0 1 1  

0 

0233 

0113 
--0133 

0 

--0112 
0 

2023 

011 

--012 

0 
0 

--013 

2023 
011 

--013 

0 
0 

-012 

~Ol 

~2 , 

~3 

r , 
~o3 

- o. 2 

a3 

O'12 

0-1 

0"23 

. O'13 

No. 13. (2, 3, 6; 1,4, 5) 

-021 
0 
012 

-022 
0 

o. 

033 --0133 

022 0122 

0 0233 
0 0 

-023 0 
0 -0223 

No. 12. (2, 3, 5; 

'0"2 0 
0"3 --011 

0-13 013 
0.1 --033 

0"23 0 

�9 O " 1 2  0 

1,4,6) 

~33 0133 

022 -0122 
0 0223 
0 0 

-023 0 
0 -0233 

~2 , 

~3 

~Pl 

~2 , 

~3 

No. 10. (1,5,6; 2,3,4) 

~1 ] 
O'13 

0'12 I 

0"2 I 
t 0"3] 

.0"23 

-022 
o 

012 

--011 

0 
0 

--033 --2023 

013 012 

0 013 

o 0 

--011 0 

0 --011 

~pl 

T 2  

~a3 

No. 11. (2,3,4; 1,5,6) 

IAi l=0 .  

As we have proved above, each of the 17 forms of stress representations via three stress functions ~i 
is the general solution of the equilibrium equations (1) and, evidently, all these forms are equivalent to each 
other, i.e., any of them yields all solutions of Eqs. (1). 

The Maxwell (No. 1) and Morera (No. 20) solutions have been known since the last century, whereas 
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the remaining solutions (22) are new. The Beltrami-Krutkov-Blokh representations [3, 4] of stresses via the 
so-called tensor of stress functions in the form (2) are precisely the sum of the Maxwell (No. 1) and Morera 
(No. 20) solutions. But since any of the solutions (22) is general, as was proved, and Eqs. (1) are linear, the 
summation of these solutions does not yield any additional generality or completeness. In view of this, the 
attempts in many studies (see, e.g., [2-5, 10, 12, 13] to prove the generality or completeness of solution (2) 
are not, according to the above considerations, quite valid. 

Hence, it follows from (22) that  the stresses are expressed via stress functions in the form a = B~2, 
where B are the matrices that  are presented in (22). However, on the other hand, o" = A C ' u  [see (17)], i.e., 

B ~  = A C ' u ,  (23) 

the following relations being valid: 

C B  = O, f f C '  -- 0. (24) 

Using Eqs. (17), (23), and (24), one can pose the elastic problem in terms of displacements and stresses 
to consider (23) as six equations for six functions T1, ~2, T3, ul ,  u2, and u3. With allowance for (17) and 
(24), from (23) we obtain the following equations in terms of displacements (see [26]): 

the compatibility conditions [see (11)] 

the stress equations 

and the equations for stress functions 

CB~o = CAC~u = O, (22) 

B'  Clu = B 'e  = 0, (26) 

r = A- lo .  ~ f f A - l o .  = O, 

a = B ~  ~ B~A-1B~o = O. 

We write Eqs. (17) and (27) in terms of stresses (cf. [11, 26, 291) 

Co" = O, f f  A - l o .  = 0 

or Eqs. (17) and (27) in terms of strains 

(27) 

(28) 

(29) 

C A r  = 0, Ble = 0. (30) 

It is clear in (29) and (30) that  there are six equations for six unknowns o.i or r rather than nine equations, 
as in the traditional Beltrami-Mitchell system for isotropic material. 

As is seen from (22), the matrices B and B' have 17 possible forms. In (29) and (30), one can use any 
of these forms, i.e., 17 forms of Eqs. (28) in terms of stresses and strains car, exis~ as well. It is possible to 
substitute B ~ and B of different forms into Eqs. (28), i.e., we obtain 17- 17 = 289 versions of equations for the 
stress r qPi. However, since Eqs. (17) and (25)-(30) are reduced to (23), it is, apparently, expedient to 
proceed from system (23) in concrete problems. 

Borodachev [27, 28] proved that the first three Saint Venant compatibility conditions and the next 
three [see (12)] are derived from one another by replacement of differentiation symbols by the parameters of 
the Fourier transform. This corresponds to a particular case of the results of the present study. 
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